

Effect of System Contaminants on PEMFC Performance and Durability

Venue: 2013 DOE Hydrogen and Fuel Cells Program Review

Presenter: Huyen Dinh (PI)

National Renewable Energy Laboratory

Date: May 14, 2013

FC048

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

Timeline

Start: July 2009

End: September 2013

% complete: ~90%

Budget

Total project funding:

DOE share: \$6,000,000*

Cost share: \$788,850

Funding received in FY12:

\$1475K*

Planned Funding for FY13:

\$1690K*

*Includes \$400K to LANL (sub)

Barriers

Barrier	2020 Target
A: Durability	5,000 h for Transportation 60,000 h for Stationary
B: Cost	\$30/kW for transportation \$1000-1700/kW for Stationary (2-10 kW)

Partners (PI)

General Motors*

University of South Carolina*

University of Hawaii*

Colorado School of Mines*

Los Alamos National Laboratory

3M (in-kind partner)

Ballard Power Systems (*new* in-kind partner)

Nuvera (*new* in-kind partner)

^{*} denotes subcontractor

Relevance

- System contaminants have been shown to affect the performance/ durability of fuel cell systems (GM).
- Balance of plant (BOP) costs have risen in importance with decreasing stack costs.

Impact

- Increase performance and durability by limiting contamination related losses
- Decrease overall fuel cell system costs by lowering BOP material costs.

DOE Hydrogen Program Record # 10004, 2010R and Rick Farmer's presentation on Fuel Cell Technologies: FY2011 Budget Request Briefing, Feb. 12, 2010

Examples of common additives in automotive thermoplastics:

- Glass fiber
- Antioxidant
- UV Stabilizer
- Flame retardant
- Processing aids
- Biocides
- Catalysts
- Residual polymer
- Residual solvents

Approach

Status	Core Project Objectives	
Complete	1. Identify fundamental classes of contamination	
Complete	2. Develop and validate test methods	
Complete	3. Identify severity of contaminants)10-2011
In progress	4. Identify impact of operating conditions	
In progress	5. Identify poisoning mechanisms - 20)12-2013
In progress	6. Develop models/predictive capability	

Future work 7. Provide guidance on future material selection End of FY2013

Dissemination of information on NREL Website: http://www.nrel.gov/hydrogen/contaminants.html

Approach – FY12-FY13 Milestones

	1	Perform parametric in-situ studies on three variety of PPA plastic to understand the mechanism of performance loss (> 50 mV loss) and recovery during fuel cell operation.	05/2012	100%
7	2	Down-select 20% of all materials and model compounds for in-depth parametric studies	07/2012	100%
Ĺ	3	Quantify the impact of two model compounds (with different functional groups) on fuel cell performance via ion exchange effects in membranes and adsorption on electrodes.	09/2012	100%
	1	Study the effect of three model compounds on ORR activity, quantifying performance loss and recovery in exsitu experiments.	01/2013	100%
-Y 1 3	2	Quantify the extent of in-situ voltage losses due to specific contamination mechanisms (ion exchange effects in membranes and poisoning of catalysts) for two model compounds	06/2013	80%
	3	Identify the impact of fuel cell operating conditions (e.g., RH, temperature, and contaminant concentration) on voltage loss and recovery for two system contaminant extracts	8/2013	70%

Technical Accomplishments

Previous Major Technical Accomplishments:

- 1. Screened <u>55</u> materials for fuel cell contamination
- 2. Preliminary assessment of studied BOP materials on fuel performance
- 3. Identified leached species for all structural materials and assembly aids
- 4. Determined origin of leached species
- 5. Selected model compounds and extracts for parametric studies

Major Technical Accomplishments Since Last Year:

- 1. Performed in-depth parametric studies on
 - a. extracts
 - b. organic model compounds and mixtures
- 2. Identified contamination mechanism
 - a. Individual organic model compounds
 - b. Mixtures of organic model compounds
 - c. In-situ & ex-situ experiments
- 3. Developed model for contamination mechanism

Technical Progress – In-depth Study of Selected Material Extract & Contaminants

Screened 62 materials using 6 different ex-situ and in-situ techniques, totaling > 740 experiments and > 1000 h of in-situ testing

	Function Description	Material Family	Total Grades
	Structural Plastic	PA (Nylon)	26
	Structural Plastic	PPS	4
	Structural Plastic	PSU	2
	Structural Plastic	PPSU	1
	Structural Plastic	PBT	2
	Structural Plastic	Ероху	1
	Structural Plastic	Phenolic	1
		Perfluoroalkylether/	
ds		polytetrafluoroethylene	
Ai	Lubricant/Grease	(PFAE/PTFE)	4
Assembly Aids	Adhesive/Seal	Urethane	6
nb	Adhesive/Seal	Silicone	2
er	Adhesive	Ероху	3
\SS	Adhesive	Acrylic Acrylate	1
1		Polyglycol	
	Thread Lock/Seal	Dimethacrylate (PGDA)	4
	Hose	Silicone	3
	Conformal Coating	Acrylic	1
	Ion Exchange Resin	Polystyrene	1
		Total	62

Set of Parametric Studies

⇒ EMS 4

EMS 7

EMS 10

⇒ 3M[®] 4000 fast cure white

⇒ Henkel Loctite[®] #567

Note: materials highlighted in yellow are new materials for this study, as suggested by Ballard Power Systems and Nuvera Inc.

Technical Progress – Aligned Parametric and Model Compound Studies of Select Assembly Aids Materials

Materials selected contain a large variety of selected model compounds

- Green => 2 Leachants selected for in-situ parametric study
- Blue => 7 Compounds selected for model compound studies
- 3 M[®] 4000 fcw has 4 main model compounds

Chemical Description	Trade Name	Liquid GCMS					In-situ voltage drop (mV)	TOC (ppm)
Urethane	3M® 4000 fast cure white	DGMEE DGMEA BA 2,6-DAT		146	1280			
Silicone	3M® #8664 black		DGMEA DGMEE BA		64	197		
Urethane	Loctite® 39916	Butyric acid N'-m-tolyl-hydrazide		I- H ₂ N NH ₂ 2,6-DA	110	266		
Urethane	Bostik® 920 Fast	\prec	- NH ₂ 4-MBSA			87	109	
Polyglycol dimethacrylate	Loctite® # 567	2-methyl-2-hydroxyethyl ester, 2-propenoic acid 2,2'-[oxybis(2,1-ethanediyloxy)]bis-ethanol PEG		84	750			
Ероху	Reltek [®] Bond-IT [®] B45	BA PTBP Benzaldehyde		555	1695			
PFAE/PTFE	Krytox® XHT-SX	None Detected					12	10

Technical Progress – In-situ Studies of Individual Organic <u>Model Compounds</u>

Model compounds result in different contamination effects

- Voltage loss,
- HFR effects
- Recoverability

Standard Operation Conditions (SOC) = T_{cell} = 80 °C , RH%=32/32, Stoich.=2/2, Back pressure=150/150 kPa, i = 0.2 A/cm²

Technical Progress – In-situ Studies of Organic Model Compound Mixtures

- Individual vs. multicomponent effects
 - Mixtures may have different contamination and recovery effects than individual compounds
 - Interaction between model compounds can occur
- Resistance change can impact the kinetic performance
- Leachant shows the combined effect of the individual compounds
- Organic contaminants can dominate the effects

 $SOC = T_{cell} = 80 \, ^{\circ}C$, RH%=32/32, Stoich.=2/2, Back pressure=150/150 kPa, i = 0.2 A/cm²

Technical Progress – Quantitative Characterization of Performance Effects

- 1. Immediate Performance Effect?
- 2. Performance Effect Accumulation?
- 3. Reversible Contamination?
- 4. ECA Loss
- 5. Recoverable ECA Loss?
- 6. Residual Contaminants?
- 7. Immediate Resistance Effect?
- 8. Resistance Effect Accumulation?
- 9. Reversible Resistance Effect?

Material Extract	Immediate Voltage Loss	Immediate Voltage Degradation Rate	Voltage Loss Accumulation Rate	HFR Accumulation Rate	Reversible Performance Loss	ECA Loss after self- induced Recovery
	[mV]	[mV/h]	[mV/h]	$[m\Omegacm^2/h]$	[%]	[%]
3M [®] 4000 fast cure white	121	251	2.3	1.02	56	36

Example data (fraction)from comprehensive quantitative analysis for characterization of performance effect.

Technical Progress – Membrane Conductivity Loss Mechanisms

- Ion-exchange and absorption are two mechanisms that lead to membrane conductivity loss
 - Amine functional group ion-exchanges and expels water.
 - Alcohol and acetate functional groups absorb into the membrane and expel water.
- Ion-exchange mechanism has stronger impact

Technical Progress – Effect of Organic Model Compounds on ECA and ORR Activity

- Decrease in mass activity is due to organic compounds adsorbing onto Pt sites
- Organic compounds may alter ORR mechanism to H₂O₂ formation
- The degree of contamination appear to be higher for polymers and aromatics compared to aliphatics

Polymeric Aromatic Aliphatic ORR mass activity follows the same trend as ECA loss

Technical Progress – Effect of Catalyst Loading on Performance with 2,6 DAT

T_{cell}=80°C, RH%=32/32, Stoich.= 2/2, Back pressure=150/150 kPa, i = 0.2 A/cm²

Lower catalyst loading results in:

- Stronger response to contaminants
- Higher immediate performance loss, likely due to adsorption
- Larger performance loss accumulation, likely due to ion exchange

Anode/Cathode Catalyst Loading [mg Pt/cm ²]	Immediate Voltage Loss [mV]	Immediate Voltage Degradation Rate [mV/h]	Voltage Loss Accumulation Rate [mV/h]	HFR Accumulation Rate [mΩcm²/h]	Reversible Performance Loss [%]	ECA Loss after self- induced Recovery
0.05/0.4	77	11	1	1.7	24	[%] 38
0.05/0.1	104	15	4	3.2	45	47

Technical Progress – Example data from parametric study of organic model compound (2,6, DAT)

- Concentration is an important driver for cell performance loss
- Liquid water may be a game changer
- Liquid water may be useful for mitigating the effects of specific contaminants

T_{cell}=80°C , RH%=32/32, Stoich.=2/2, Back pressure=150/150 kPa, i=0.2 A/cm², 2,6-DAT

Technical Progress – Summary of Assembly Aids and Model Compound Parametric & Mechanism Studies

Parameter study

- Ranges reflect 80% of typical fuel cell vehicle operation
- Feed rate, RH, and current density strongly affect contamination
- Liquid water content may impact performance & recovery effect
- Cell temperature changes (80°C & 50°C) show some impact on performance loss and recovery
- Lower Pt catalyst loading results in higher performance loss
- Additional parametric studies are being performed with structural materials (see back up slide)

Mechanism study

- Functional groups of organic compounds are important in understanding system contaminants
- Performance loss may contain reversible, recoverable, and non-recoverable contributions
- Identified contamination mechanisms:
 - Adsorption on catalyst
 - Redox reaction (see back up slide)
 - o Ion-exchange/absorption processes with ionomer
- Developed a model on the effect of organic compounds on fuel cell performance (see back up slide)

Dissemination via NREL Website: http://www.nrel.gov/hydrogen/contaminants.html

Proposed Future Work

Future Work:

- Perform in-depth analysis of in-situ parametric data
- Finalize modeling the effects of contaminants at various operating conditions
- Disseminate project information
 - website, publications & presentations

Future Research Needs:

- Study additional low cost BOP materials
- Estimate real system contamination rates
- Develop durability test protocol for contaminants studies
 - Real time & Accelerated Stress Test
- Develop mitigation strategies
- Further develop model to include compound mixtures
- Stack, system, and/or vehicle studies
- Contamination studies on state of the art materials

Collaborators

Institutions	Role
National Renewable Energy Laboratory (NREL): H. Dinh (PI), G. Bender, C. Macomber, H. Wang, KC Neyerlin, K. O'Neill, B. Pivovar	Prime, Oversees the project, broad screening and analytical characterization; membrane degradation material study
General Motors LLC (GM): K. O'Leary, P. Yu, B. Lakshmanan, E.A. Bonn, J. Sergi, R. Reid, R. Moses, S. Bhargava, and T. Jackson	Sub; Define material sets, broad screening, analytical characterization and in-depth analysis of structural materials
University of South Carolina (USC): J. Van Zee, J. Weidner, M. Ohashi, M. Opu, M. Das, H. Seok Cho	Sub; Broad screening and deep probe study of assembly aids materials; modeling
Los Alamos National Laboratory (LANL): T. Rockward	Minor partner; Durability testing of liquid phase contaminant
University of Hawaii (UH): J. StPierre , Keith Bethune	Minor sub; Durability testing of gas phase contaminant (silicone material)
Colorado School of Mines (CSM): R. Richards, J. Christ	Sub; membrane degradation material study
3M: S. Hamrock	In-kind partner; Provide membrane degradation products;

Interactions: Participate in the DOE Durability working group

Ballard Power Systems and Nuvera Inc. on material selection and testing protocols

Summary

Relevance: Focus on overcoming the cost and durability barriers for fuel cell systems.

Approach: Screen BOP materials and select leachants and model compounds; perform parametric studies of the effect of system contaminants on fuel cell performance and durability; identify poisoning mechanisms and recommend mitigation strategies; develop predictive modeling and provide guidance on future material selection to enable the fuel cell industry in making costbenefit analyses of system components.

Technical Accomplishments and Progress: Completed all milestones on time. Performed parametric in-situ studies and identified key operating conditions that impact fuel cell performance; identified contamination mechanisms; quantified the impact of model compounds on fuel cell performance and relate it to extract results; modeled the contamination effect of specific organic compounds; performed long term testing of selected contaminant; screened additional BOP materials suggested by Ballard and Nuvera; developed a website for dissemination of project information.

Collaborations: Our team has significant background data and relevant experience in contaminants, materials and fuel cells. It consists of a diverse team of researchers from several institutions including 2 national labs, 3 universities, and 4 industry partners.

Proposed Future Research: Perform in-depth analysis of parametric in-situ studies; finalize modeling the effects of contaminants at various operating conditions; disseminate project information via website, publications and presentations.

Technical Back-up Slides

Technical Progress – Parametric Studies of Structural Materials (in process)

Cell voltage loss (ΔV)

Factors	Pt loading [mg/cm²]	Extraction sol'n concentration	RH [%]	Temp. [°C]	Current density [A/cm ²]
Hi	0.4	→ 1X (HH)	65	80	0.2
Lo	0.1	0.1X (HL)	32	40	0.06

Cell voltage profile during infusion

Results for EMS-4

- A partial factorial $[2^2 + 1]$ test is complete.
- ΔV is influenced by Pt loading and extract solution concentration.
- High Pt loading, low concentration would relieve voltage degradation.
- Voltage loss can be partially recovered via water infusion.

Technical Progress – Recoverability of Organic Model Compounds (ex-situ cyclic voltammetry)

- Physisorbed aliphatic organic compounds are recoverable
- Aromatics with amine group are more difficult to recover

-20mM

Potential, mV

- Some organics can under go redox reactions and their products can have a different effects
- Ex-situ data supports in-situ data

-400

-20mM

Potential mV

-500

1200

-20mM

Potential, mV

-20mM

Technical Progress – Develop a model for contamination mechanisms

A. Schematic of channel and adsorption on Pt

B. Model development & outcome

- 1. 2-D (x, z) and time (t) (i.e., channel length, GDL/CL thickness, time)
- 2. The model equations included:
 - a. Material balance for contaminant
 - b. Partition coefficients for surface and membrane species
 - c. Stoichiometry for air and water

C. Outcome

- Predict ΔV (loss) and distributions for Pt coverage, ionomer and membrane adsorption/absorption mechanisms
- Model relates ex-situ and in-situ measurement

D. Predicting \triangle V with Butler-Volmer & Conductivity

E. Compare model with DEGEE infusion data

T_{cell}= 80°C, stoich.=2.0/2.0 P=150/150 kPa i=0.2 A/cm², RH=32/32%

Technical Progress: Impact of PEM degradation products on Pt electrode

- Model compounds were found to adsorb on Pt electrode surfaces with the carboxylic acids showing stronger impact than sulfonic acids, and diacids (MC2, MC3) showing strongest impact
- Performance impact due to an increase in fluorocarbon chain length was observed for carboxylic acids
- ORR performance was recoverable after gentle DI water rinse for all compounds

Approach – Material Selection & Focus

Materials chosen based on:

- 1. Physical properties
 - Operating conditions (0-100% RH, -40-90°C)
- 2. Commercial availability
- 3. Cost
- 4. Input from OEMs and fuel cell system manufacturers
 - GM (active project collaborator)
 - Ballard Power Systems
 - Nuvera

Material Selection Prioritization:

based on wetted surface area, total mass/volume, proximity to MEAs, function, cost, and performance implications

- 1. Structural materials
- 2. Coolants
- 3. Elastomers for seals
- 4. Elastomers for (sub)gaskets
- 5. Assembly aids (adhesives, lubricants)
- 6. Hoses
- 7. Membrane degradation products
- 8. Fuel Impurities
- 9. lons from catalyst alloys

1.Balance of Plant Materials (BoP)	Focus
Liquid path	90%
 Structural plastics 	
 Adhesives 	
 Lubricants 	
Gas path	5%
 General silicone material 	
2.By-products of membrane degradation	5%

Note: materials highlighted in red were chosen for this study